Mar 25, 2011

Learn how to make the best photos you can create with your digital camera

Key Features

1. Getting to Know Your Digital Camera
2. File Formats and Quality Settings
3. Digital Exposure 101
4. Creative Control of Apertures (f/stops) and Shutter Speeds
5. Exposure Evaluation and Low-Light Photography
6. Controlling White Balance and Other Aspects, In-Camera
7. Composition and Lens Choice
8. Introduction to Image Enhancing Software

* Learn to use your new digital camera's features.
* Learn about the most effective shooting techniques.
* Gain full control over the "look" of your images.
* Great for owners of Digital SLR cameras as well as compact digital cameras with overrides.

Lesson 1: Getting to Know Your Digital Camera
Understanding your camera controls and functions. The five most valuable features. Features to avoid. Checklist of what your camera can and cannot do. How to get the most out of your digital camera. The biggest advantage of shooting digital: the right way to use your LCD monitor.
Assignment: Give Us Your (Worst and) Best Shot: Before and After

Lesson 2: File Formats and Quality Settings
JPEG and other in-camera options such as Raw and TIFF: pros and cons of each shooting format. Tips on shooting with RAW capture and image conversion. Storage and memory issues - doing digital photography on the road. Why you should convert your JPEG pics to TIFF format in the computer.
Assignment: JPEG A JPEG That Has Been JPEG'ed

Lesson 3: Digital Exposure 101
The primary exposure concepts. Why cameras sometimes make images that are too dark. Using Exposure Compensation, a simple method for perfect exposures. Learn where to meter from and use Exposure Lock. The part ISO plays in exposure. Tip: Use a Semi Automatic mode while maintaining full control.
Assignment: Exposure: Over, Under and Just Right

Lesson 4: Creative Control of Apertures (f/stops) and Shutter Speeds
Learn "depth of field" and motion control with aperture and shutter speed selection, using the camera's automatic and semi-automatic modes. A primer on depth of field. Prevent blurring from camera shake and subject movement. Great news about exposure when changing f/stops or shutter speeds in certain camera modes.
Assignment: Aperture/Depth of Field Control; also, Shutter Speed/Motion Control

Lesson 5: Exposure Evaluation and Low-Light Photography
Using the camera's histogram (and "loss of highlight detail warning") to evaluate exposure and contrast. The challenges and compromises of night photography. ISO Equivalents - changing ISO on the fly. Minimizing digital noise (graininess). Shooting at night - with and without a tripod. Making beautiful images in low light.
Assignment: Night Shoot - Before and After; also, High Contrast vs. Low Contrast

Lesson 6: Controlling White Balance and Other Aspects, In-Camera
The color of light for the non-physics major. Understanding the white balance options. The easy way to getting the correct white balance. Adjusting the in-camera level for sharpening and color saturation.
Assignment: White Balance Before and After; also, Saturation/Sharpness Before and After

Lesson 7: Composition and Lens Choice
Principles of visual design. Putting the Rule of Thirds to good use. An easy way to understand the Golden Rectangle. Shooting vertical as well as horizontal photos. Understanding lens focal lengths. Wide angle and telephoto options with digital SLR "focal length magnification factors".
Assignment: Rule of Thirds/Orientation: Before and After

Lesson 8: Introduction to Image Enhancing Software
Adjusting brightness, contrast, color balance, color saturation and sharpness in a few steps. Understanding the primary color concept in digital imaging. Taking advantage of automated enhancing features such as Auto Levels and Red-Eye Removal. Introduction to image correction with RAW converter software. And a bonus: a brief introduction to software for making long panoramic images from several photos made for exactly this purpose.
Assignment: Correct a Technically Poor Image in Under 60 seconds

CAMERA MODEL : NIKON D-40

Color Respresentation : sRGB
Photography : JackHouse
Time : 09:18 am
Focal Length : 18 mm
F-Number : F/9
Exposure Time : 1/500 sec.
ISO Speed : ISO-200







Now explanation for :

1. FOCAL LENGTH
2. F-Number
3. Exposure Time
4. ISO Speed



Focal length

The focal length of an optical system is a measure of how strongly the system converges (focuses) or diverges (defocuses) light. For an optical system in air, it is the distance over which initially collimated rays are brought to a focus. A system with a shorter focal length has greater optical power than one with a long focal length; that is, it bends the rays more strongly, bringing them to a focus in a shorter distance.

In telescopy and most photography, longer focal length or lower optical power is associated with larger magnification of distant objects, and a narrower angle of view. Conversely, shorter focal length or higher optical power is associated with a wider angle of view. In microscopy, on the other hand, a shorter objective lens focal length leads to higher magnification.

Thin lens approximation :
For a thick lens (one which has a non-negligible thickness), or an imaging system consisting of several lenses and/or mirrors (e.g., a photographic lens or a telescope), the focal length is often called the effective focal length (EFL), to distinguish it from other commonly-used parameters:

* Front focal length (FFL) or Front focal distance (FFD) is the distance from the front focal point of the system to the vertex of the first optical surface.[1][2]
* Back focal length (BFL) or Back focal distance (BFD) is the distance from the vertex of the last optical surface of the system to the rear focal point.[1][2]

For an optical system in air, the effective focal length gives the distance from the front and rear principal planes to the corresponding focal points. If the surrounding medium is not air, then the distance is multiplied by the refractive index of the medium. Some authors call this distance the front (rear) focal length, distinguishing it from the front (rear) focal distance, defined above.[1]

In general, the focal length or EFL is the value that describes the ability of the optical system to focus light, and is the value used to calculate the magnification of the system. The other parameters are used in determining where an image will be formed for a given object position.

For the case of a lens of thickness d in air, and surfaces with radii of curvature R1 and R2, the effective focal length f is given by:

\frac{1}{f} = (n-1) \left[ \frac{1}{R_1} - \frac{1}{R_2} + \frac{(n-1)d}{n R_1 R_2} \right],

where n is the refractive index of the lens medium. The quantity 1/f is also known as the optical power of the lens.

The corresponding front focal distance is:

\mbox{FFD} = f \left( 1 + \frac{ (n-1) d}{n R_2} \right),

and the back focal distance:

\mbox{BFD} = f \left( 1 - \frac{ (n-1) d}{n R_1} \right).

In the sign convention used here, the value of R1 will be positive if the first lens surface is convex, and negative if it is concave. The value of R2 is positive if the second surface is concave, and negative if convex. Note that sign conventions vary between different authors, which results in different forms of these equations depending on the convention used.

For a spherically curved mirror in air, the magnitude of the focal length is equal to the radius of curvature of the mirror divided by two. The focal length is positive for a concave mirror, and negative for a convex mirror. In the sign convention used in optical design, a concave mirror has negative radius of curvature, so

f = -{R \over 2},

where R is the radius of curvature of the mirror's surface.

See Radius of curvature (optics) for more information on the sign convention for radius of curvature used here.

























Angle of view of 28mm lens on a 35mm camera (f/4)

Angle of view of 70mm lens on a 35mm camera (f/4)
When a photographic lens is set to "infinity", its rear nodal point is separated from the sensor or film, at the focal plane, by the lens's focal length. Objects far away from the camera then produce sharp images on the sensor or film, which is also at the image plane.

To render closer objects in sharp focus, the lens must be adjusted to increase the distance between the rear nodal point and the film, to put the film at the image plane. The focal length f, the distance from the front nodal point to the object to photograph S1, and the distance from the rear nodal point to the image plane S2 are then related by:

\frac{1}{S_1} + \frac{1}{S_2} = \frac{1}{f} .

As S1 is decreased, S2 must be increased. For example, consider a normal lens for a 35 mm camera with a focal length of f = 50 mm. To focus a distant object (S_1\approx \infty), the rear nodal point of the lens must be located a distance S2 = 50 mm from the image plane. To focus an object 1 m away (S1 = 1000 mm), the lens must be moved 2.6 mm further away from the image plane, to S2 = 52.6 mm.

Camera lens focal lengths are usually specified in millimetres (mm), but some older lenses are marked in centimetres (cm) or inches.

The focal length of a lens determines the magnification at which it images distant objects. It is equal to the distance between the image plane and a pinhole that images distant objects the same size as the lens in question. For rectilinear lenses (that is, with no image distortion), the imaging of distant objects is well modeled as a pinhole camera model.[3] This model leads to the simple geometric model that photographers use for computing the angle of view of a camera; in this case, the angle of view depends only on the ratio of focal length to film size. In general, the angle of view depends also on the distortion.[4]

A lens with a focal length about equal to the diagonal size of the film or sensor format is known as a normal lens; its angle of view is similar to the angle subtended by a large-enough print viewed at a typical viewing distance of the print diagonal, which therefore yields a normal perspective when viewing the print;[5] this angle of view is about 53 degrees diagonally. For full-frame 35mm-format cameras, the diagonal is 43 mm and a typical "normal" lens has a 50 mm focal length. A lens with a focal length shorter than normal is often referred to as a wide-angle lens (typically 35 mm and less, for 35mm-format cameras), while a lens significantly longer than normal may be referred to as a telephoto lens (typically 85 mm and more, for 35mm-format cameras). Technically long focal length lenses are only "telephoto" if the focal length is longer than the physical length of the lens, but the term is often used to describe any long focal length lens.

Due to the popularity of the 35 mm standard, camera–lens combinations are often described in terms of their 35 mm equivalent focal length, that is, the focal length of a lens that would have the same angle of view, or field of view, if used on a full-frame 35 mm camera. Use of a 35 mm equivalent focal length is particularly common with digital cameras, which often use sensors smaller than 35 mm film, and so require correspondingly shorter focal lengths to achieve a given angle of view, by a factor known as the crop factor.

2.F-Number

F number" redirects here. For other uses, see F scale (disambiguation).In optics, the f-number (sometimes called focal ratio, f-ratio, f-stop, or relative aperture[1]) of an optical system expresses the diameter of the entrance pupil in terms of the focal length of the lens; in simpler terms, the f-number is the focal length divided by the "effective" aperture diameter. It is a dimensionless number that is a quantitative measure of lens speed, an important concept in photography.
Diagram of decreasing apertures, that is, increasing f-numbers, in one-stop increments; each aperture has half the light gathering area of the previous one.


Notation

The f-number (f/#) is often notated as N and is given by

N = \frac fD \

where f is the focal length, and D is the diameter of the entrance pupil. By convention, "f/#" is treated as a single symbol, and specific values of f/# are written by replacing the number sign with the value. For example, if the focal length is 16 times the pupil diameter, the f-number is f/16, or N = 16. The greater the f-number, the less light per unit area reaches the image plane of the system; the amount of light transmitted to the film (or sensor) decreases with the f-number squared. Doubling the f-number increases the necessary exposure time by a factor of four.

The pupil diameter is proportional to the diameter of the aperture stop of the system. In a camera, this is typically the diaphragm aperture, which can be adjusted to vary the size of the pupil, and hence the amount of light that reaches the film or image sensor. The common assumption in photography that the pupil diameter is equal to the aperture diameter is not correct for many types of camera lens, because of the magnifying effect of lens elements in front of the aperture.

A 100 mm focal length lens with an aperture setting of f/4 will have a pupil diameter of 25 mm. A 200 mm focal length lens with a setting of f/4 will have a pupil diameter of 50 mm. The 200 mm lens's f/4 opening is larger than that of the 100 mm lens but both will produce the same illuminance in the focal plane when imaging an object of a given luminance.

In other types of optical system, such as telescopes and binoculars, the same principle holds: the greater the focal ratio, the fainter the images created (measuring brightness per unit area of the image).


Stops, f-stop conventions, and exposure


The term stop is sometimes confusing due to its multiple meanings. A stop can be a physical object: an opaque part of an optical system that blocks certain rays. The aperture stop is the aperture that limits the brightness of the image by restricting the input pupil size, while a field stop is a stop intended to cut out light that would be outside the desired field of view and might cause flare or other problems if not stopped.

In photography, stops are also a unit used to quantify ratios of light or exposure, with one stop meaning a factor of two, or one-half. The one-stop unit is also known as the EV (exposure value) unit. On a camera, the f-number is usually adjusted in discrete steps, known as f-stops. Each "stop" is marked with its corresponding f-number, and represents a halving of the light intensity from the previous stop. This corresponds to a decrease of the pupil and aperture diameters by a factor of \sqrt{2} or about 1.414, and hence a halving of the area of the pupil.

Modern lenses use a standard f-stop scale, which is an approximately geometric sequence of numbers that corresponds to the sequence of the powers of the square root of 2: f/1, f/1.4, f/2, f/2.8, f/4, f/5.6, f/8, f/11, f/16, f/22, f/32, f/45, f/64, f/90, f/128, etc. The values of the ratios are rounded off to these particular conventional numbers, to make them easier to remember and write down. The sequence above can be obtained as following: f/1 = \frac{f/1}{(\sqrt{2})^0} , f/1.4 = \frac{f/1}{(\sqrt{2})^1} ,f/2 = \frac{f/1}{(\sqrt{2})^2} , f/2.8 = \frac{f/1}{(\sqrt{2})^3} ...

Shutter speeds are arranged in a similar scale, so that one step in the shutter speed scale corresponds to one stop in the aperture scale. Opening up a lens by one stop allows twice as much light to fall on the film in a given period of time, therefore to have the same exposure at this larger aperture, as at the previous aperture, the shutter speed is set twice as fast (i.e., the shutter is open half as long); the film will usually respond equally to these equal amounts of light, since it has the property known as reciprocity. Alternatively, one could use a film that is half as sensitive to light, with the original shutter speed.

Photographers sometimes express other exposure ratios in terms of 'stops'. Ignoring the f-number markings, the f-stops make a logarithmic scale of exposure intensity. Given this interpretation, one can then think of taking a half-step along this scale, to make an exposure difference of "half a stop".


Fractional stops


Most old cameras had an aperture scale graduated in full stops but the aperture is continuously variable allowing to select any intermediate aperture.

Click-stopped aperture became a common feature in the 1960s; the aperture scale was usually marked in full stops, but many lenses had a click between two marks, allowing a gradation of one half of a stop.

On modern cameras, especially when aperture is set on the camera body, f-number is often divided more finely than steps of one stop. Steps of one-third stop (1/3 EV) are the most common, since this matches the ISO system of film speeds. Half-stop steps are also seen on some cameras. As an example, the aperture that is one-third stop smaller than f/2.8 is f/3.2, two-thirds smaller is f/3.5, and one whole stop smaller is f/4. The next few f-stops in this sequence are

f/4.5, f/5, f/5.6, f/6.3, f/7.1, f/8, etc.

To calculate the steps in a full stop (1 EV) one could use

20×0.5, 21×0.5, 22×0.5, 23×0.5, 24×0.5 etc.

The steps in a half stop (1/2 EV) series would be

20/2×0.5, 21/2×0.5, 22/2×0.5, 23/2×0.5, 24/2×0.5 etc.

The steps in a third stop (1/3 EV) series would be

20/3×0.5, 21/3×0.5, 22/3×0.5, 23/3×0.5, 24/3×0.5 etc.

As in the earlier DIN and ASA film-speed standards, the ISO speed is defined only in one-third stop increments, and shutter speeds of digital cameras are commonly on the same scale in reciprocal seconds. A portion of the ISO range is the sequence

... 16/13°, 20/14°, 25/15°, 32/16°, 40/17°, 50/18°, 64/19°, 80/20°, 100/21°, 125/22°...

while shutter speeds in reciprocal seconds have a few conventional differences in their numbers (1/15, 1/30, and 1/60 second instead of 1/16, 1/32, and 1/64).

In practice the maximum aperture of a lens is often not an integral power of \sqrt{2} (i.e. \sqrt{2} to the power of a whole number), in which case it is usually a half or third stop above or below an integral power of \sqrt{2}.

Modern electronically-controlled interchangeable lenses, such as those from Canon and Sigma for SLR cameras, have f-stops specified internally in 1/8-stop increments, so the cameras' 1/3-stop settings are approximated by the nearest 1/8-stop setting in the lens.


Standard full-stop f-number scale


Including aperture value AV:
AV -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
f/# 0.5 0.7 1.0 1.4 2 2.8 4 5.6 8 11 16 22 32 45 64 90 128

Typical one-half-stop f-number scale
f/# 1.0 1.2 1.4 1.7 2 2.4 2.8 3.3 4 4.8 5.6 6.7 8 9.5 11 13 16 19 22

Typical one-third-stop f-number scale
f/# 1.0 1.1 1.2 1.4 1.6 1.8 2 2.2 2.5 2.8 3.2 3.5 4 4.5 5.0 5.6 6.3 7.1 8 9 10 11 13 14 16 18 20 22

Typical one-quarter-stop f-number scale
f/# 1.8 2 2.2 2.4 2.6 2.8 3.2 3.4 3.7 4 4.4 4.8 5.2 5.6 6.2 6.7 7.3 8 8.7 9.5 10 11 12 14 15 16 17 19 21 22

Effects on image quality



3. Exposure Time
In photography, shutter speed is a common term used to discuss exposure time, the effective length of time a camera's shutter is open.The total exposure is proportional to this exposure time, or duration of light reaching the film or image sensor.

In still cameras, the term shutter speed represents the time that the shutter remains open when taking a photograph. Along with the aperture of the lens (also called f-number), it determines the amount of light that reaches the film or sensor. Conventionally, the exposure is measured in units of exposure value (EV), sometimes called stops, representing a halving or doubling of the exposure.

Multiple combinations of shutter speed and aperture can give the same exposure: halving the shutter speed doubles the exposure (1 EV more), while doubling the aperture (halving the number) increases the exposure by a factor of 4 (2 EV). For this reason, standard apertures differ by √2, or about 1.4. Thus an exposure with a shutter speed of 1/250 s and f/8 is the same as with 1/500 s and f/5.6, or 1/125 s and f/11.

In addition to its effect on exposure, the shutter speed changes the way movement appears in the picture. Very short shutter speeds can be used to freeze fast-moving subjects, for example at sporting events. Very long shutter speeds are used to intentionally blur a moving subject for artistic effect.[2] Short exposure times are sometimes called "fast", and long exposure times "slow".

Adjustment to the aperture controls the depth of field, the distance range over which objects are acceptably sharp; such adjustments need to be compensated by changes in the shutter speed.

In early days of photography, available shutter speeds were not standardized, though a typical sequence might have been 1/10 s, 1/25 s, 1/50 s, 1/100 s, 1/200 s and 1/500 s. Following the adoption of a standardized way of representing aperture so that each major step exactly doubled or halved the amount of light entering the camera (f/2.8, f/4, f/5.6, f/8, f/11, f/16, etc.), a standardized 2:1 scale was adopted for shutter speed so that opening one aperture stop and reducing the shutter speed by one step resulted in the identical exposure. The agreed standards for shutter speeds are:[3]

* 1/1000 s
* 1/500 s
* 1/250 s
* 1/125 s
* 1/60 s
* 1/30 s
* 1/15 s
* 1/8 s
* 1/4 s
* 1/2 s
* 1 s

An extended exposure can also allow photographers to catch brief flashes of light, as seen here. Exposure time 15 seconds.

With this scale, each increment roughly doubles the amount of light (longer time) or halves it (shorter time).

Camera shutters often include one or two other settings for making very long exposures:

* B (for bulb) keeps the shutter open as long as the shutter release is held.
* T (for time) keeps the shutter open until the shutter release is pressed again.

The ability of the photographer to take images without noticeable blurring by camera movement is an important parameter in the choice of slowest possible shutter speed for a handheld camera. The rough guide used by most 35 mm photographers is that the slowest shutter speed that can be used easily without much blur due to camera shake is the shutter speed numerically closest to the lens focal length. For example, for handheld use of a 35 mm camera with a 50 mm normal lens, the closest shutter speed is 1/60 s. This rule can be augmented with knowledge of the intended application for the photograph, an image intended for significant enlargement and closeup viewing would require faster shutter speeds to avoid obvious blur. Through practice and special techniques such as bracing the camera, arms, or body to minimize camera movement longer shutter speeds can be used without blur. If a shutter speed is too slow for hand holding, a camera support, usually a tripod, must be used. Image stabilization can often permit the use of shutter speeds 3–4 stops slower (exposures 8–16 times longer).

Shutter priority refers to a shooting mode used in semi-automatic cameras. It allows the photographer to choose a shutter speed setting and allow the camera to decide the correct aperture. This is sometimes referred to as Shutter Speed Priority Auto Exposure, or Tv (time value) mode.

4. ISO Speed

Photography is the art, science, and practice of creating pictures by recording radiation on a radiation-sensitive medium, such as a photographic film, or electronic image sensors. Photography uses foremost radiation in the UV, visible and near-IR spectrum.[1] For common purposes the term light is used instead of radiation. Light reflected or emitted from objects form a real image on a light sensitive area (film or plate) or a FPA pixel array sensor by means of a pin hole or lens in a device known as a camera during a timed exposure. The result on film or plate is a latent image, subsequently developed into a visual image (negative or diapositive). An image on paper base is known as a print. The result on the FPA pixel array sensor is an electrical charge at each pixel which is electronically processed and stored in a computer (raster)-image file for subsequent display or processing. Photography has many uses for business, science, manufacturing (f.i. Photolithography), art, and recreational purposes.

Function

The camera is the image-forming device, and photographic film or a silicon electronic image sensor is the sensing medium. The respective recording medium can be the film itself, or a digital electronic or magnetic memory.[4]

Photographers control the camera and lens to "expose" the light recording material (such as film) to the required amount of light to form a "latent image" (on film) or "raw file" (in digital cameras) which, after appropriate processing, is converted to a usable image. Digital cameras use an electronic image sensor based on light-sensitive electronics such as charge-coupled device (CCD) or complementary metal-oxide-semiconductor (CMOS) technology. The resulting digital image is stored electronically, but can be reproduced on paper or film.

The basic principle of a camera or camera obscura is that it is a dark room, or chamber from which, as far as possible, all light is excluded except the light that forms the image. On the other hand, the subject being photographed must be illuminated. Cameras can be small, or very large the dark chamber consisting of a whole room that is kept dark, while the object to be photographed is in another room where the subject is illuminated. This was common for reproduction photography of flat copy when large film negatives were used. A general principle known from the birth of photography is that the smaller the camera, the brighter the image. This meant that as soon as photographic materials became sensitve enough (fast enoough) to take candid or what were called genre pictures, small detective cameras were used, some of them disguised as a tie pin that was really a lens, as a piece of luggage or even a pocket watch (the Ticka camera).

The invention, or rather the discovery of the camera or camera obscura that provides an image of a scene, still life or portrait is very old, the oldest mentioned discovery being in ancient China. Leonardo da Vinci mentions natural camera obscuras that are formed by dark caves on the edge of a sunlit valley. A hole in the cave wall will act as a pinhole camera and project a laterally reversed, upside down image on a piece of paper. So the invention of photography was really concerned with finding a means to fix and retain the image in the camera obscura. This in fact occurred first using the reproduction of images without a camera when Josiah Wedgewood, from the famous family of potters, obtained copies of paintings on leather using silver salts. As he had no way of fixing them, that is to say to stabilize the image by washing out the non exposed silver salts, they turned completely black in the light and had to be kept in a dark room for viewing.

Renaissance painters used the camera obscura which, in fact, gives the optical rendering in color that dominates Western Art.

The movie camera is a type of photographic camera which takes a rapid sequence of photographs on strips of film. In contrast to a still camera, which captures a single snapshot at a time, the movie camera takes a series of images, each called a "frame". This is accomplished through an intermittent mechanism. The frames are later played back in a movie projector at a specific speed, called the "frame rate" (number of frames per second). While viewing, a person's eyes and brain merge the separate pictures together to create the illusion of motion.[5]

In all but certain specialized cameras, the process of obtaining a usable exposure must involve the use, manually or automatically, of a few controls to ensure the photograph is clear, sharp and well illuminated. The controls usually include but are not limited to the following:
Control Description
Focus The adjustment to place the sharpest focus where it is desired on the subject.
Aperture Adjustment of the lens opening, measured as f-number, which controls the amount of light passing through the lens. Aperture also has an effect on depth of field and diffraction – the higher the f-number, the smaller the opening, the less light, the greater the depth of field, and the more the diffraction blur. The focal length divided by the f-number gives the effective aperture diameter.
Shutter speed Adjustment of the speed (often expressed either as fractions of seconds or as an angle, with mechanical shutters) of the shutter to control the amount of time during which the imaging medium is exposed to light for each exposure. Shutter speed may be used to control the amount of light striking the image plane; 'faster' shutter speeds (that is, those of shorter duration) decrease both the amount of light and the amount of image blurring from motion of the subject and/or camera.
White balance On digital cameras, electronic compensation for the color temperature associated with a given set of lighting conditions, ensuring that white light is registered as such on the imaging chip and therefore that the colors in the frame will appear natural. On mechanical, film-based cameras, this function is served by the operator's choice of film stock or with color correction filters. In addition to using white balance to register natural coloration of the image, photographers may employ white balance to aesthetic end, for example white balancing to a blue object in order to obtain a warm color temperature.
Metering Measurement of exposure so that highlights and shadows are exposed according to the photographer's wishes. Many modern cameras meter and set exposure automatically. Before automatic exposure, correct exposure was accomplished with the use of a separate light metering device or by the photographer's knowledge and experience of gauging correct settings. To translate the amount of light into a usable aperture and shutter speed, the meter needs to adjust for the sensitivity of the film or sensor to light. This is done by setting the "film speed" or ISO sensitivity into the meter.
ISO speed Traditionally used to "tell the camera" the film speed of the selected film on film cameras, ISO speeds are employed on modern digital cameras as an indication of the system's gain from light to numerical output and to control the automatic exposure system. The higher the ISO number the greater the film sensitivity to light, whereas with a lower ISO number, the film is less sensitive to light. A correct combination of ISO speed, aperture, and shutter speed leads to an image that is neither too dark nor too light, hence it is 'correctly exposed,' indicated by a centered meter.
Autofocus point On some cameras, the selection of a point in the imaging frame upon which the auto-focus system will attempt to focus. Many Single-lens reflex cameras (SLR) feature multiple auto-focus points in the viewfinder.

Many other elements of the imaging device itself may have a pronounced effect on the quality and/or aesthetic effect of a given photograph; among them are:

* Focal length and type of lens (normal, long focus, wide angle, telephoto, macro, fisheye, or zoom)
* Filters placed between the subject and the light recording material, either in front of or behind the lens
* Inherent sensitivity of the medium to light intensity and color/wavelengths.
* The nature of the light recording material, for example its resolution as measured in pixels or grains of

Exposure and rendering

Camera controls are inter-related. The total amount of light reaching the film plane (the 'exposure') changes with the duration of exposure, aperture of the lens, and on the effective focal length of the lens (which in variable focal length lenses, can force a change in aperture as the lens is zoomed). Changing any of these controls can alter the exposure. Many cameras may be set to adjust most or all of these controls automatically. This automatic functionality is useful for occasional photographers in many situations.

The duration of an exposure is referred to as shutter speed, often even in cameras that do not have a physical shutter, and is typically measured in fractions of a second. It is quite possible to have exposures one of several seconds, usually for still-life subects, and for night scenes exposure times can be several hours.

The effective aperture is expressed by an f-number or f-stop (derived from focal ratio), which is proportional to the ratio of the focal length to the diameter of the aperture. Longer lenses will pass less light even though the diameter of the aperture is the same due to the greater distance the light has to travel: shorter lenses (a shorter focal length) will be brighter with the same size of aperture.

The smaller the f/number, the larger the effective aperture. The present system of f/numbers to give the effective aperture of a lens was standardized by an international convention. There were earlier, different series of numbers in older cameras.

If the f-number is decreased by a factor of \sqrt 2, the aperture diameter is increased by the same factor, and its area is increased by a factor of 2. The f-stops that might be found on a typical lens include 2.8, 4, 5.6, 8, 11, 16, 22, 32, where going up "one stop" (using lower f-stop numbers) doubles the amount of light reaching the film, and stopping down one stop halves the amount of light.

Image capture can be achieved through various combinations of shutter speed, aperture, and film or sensor speed. Different (but related) settings of aperture and shutter speed enable photographs to be taken under various conditions of film or sensor speed, lighting and motion of subjects and/or camera, and desired depth of field. A slower speed film will exhibit less "grain", and a slower speed setting on an electronic sensor will exhibit less "noise", while higher film and sensor speeds allow for a faster shutter speed, which reduces motion blur or allows the use of a smaller aperture to increase the depth of field. For example, a wider aperture is used for lower light and a lower aperture for more light. If a subject is in motion, then a high shutter speed may be needed. A tripod can also be helpful in that it enables a slower shutter speed to be used.

For example, f/8 at 8 ms (1/125th of a second) and f/5.6 at 4 ms (1/250th of a second) yield the same amount of light. The chosen combination has an impact on the final result. The aperture and focal length of the lens determine the depth of field, which refers to the range of distances from the lens that will be in focus. A longer lens or a wider aperture will result in "shallow" depth of field (i.e. only a small plane of the image will be in sharp focus). This is often useful for isolating subjects from backgrounds as in individual portraits or macro photography. Conversely, a shorter lens, or a smaller aperture, will result in more of the image being in focus. This is generally more desirable when photographing landscapes or groups of people. With very small apertures, such as pinholes, a wide range of distance can be brought into focus, but sharpness is severely degraded by diffraction with such small apertures. Generally, the highest degree of "sharpness" is achieved at an aperture near the middle of a lens's range (for example, f/8 for a lens with available apertures of f/2.8 to f/16). However, as lens technology improves, lenses are becoming capable of making increasingly sharp images at wider apertures.

Image capture is only part of the image forming process. Regardless of material, some process must be employed to render the latent image captured by the camera into a viewable image. With slide film, the developed film is just mounted for projection. Print film requires the developed film negative to be printed onto photographic paper or transparency. Digital images may be uploaded to an image server (e.g., a photo-sharing web site), viewed on a television, or transferred to a computer or digital photo frame..

Good Luck.. :)

No comments:

Post a Comment